Material Removal Mechanisms of Polycrystalline Silicon Carbide Ceramic Cut by a Diamond Wire Saw
Materials, ISSN: 1996-1944, Vol: 17, Issue: 17
2024
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Polycrystalline silicon carbide (SiC) is a highly valuable material with crucial applications across various industries. Despite its benefits, processing this brittle material efficiently and with high quality presents significant challenges. A thorough understanding of the mechanisms involved in processing and removing SiC is essential for optimizing its production. In this study, we investigated the sawing characteristics and material removal mechanisms of polycrystalline silicon carbide (SiC) ceramic using a diamond wire saw. Experiments were conducted with high wire speeds of 30 m/s and a maximum feed rate of 2.0 mm/min. The coarseness value (R) increased slightly with the feed rate. Changes in the diamond wire during the grinding process and their effects on the grinding surface were analyzed using scanning electron microscopy (SEM), laser confocal microscopy, and focused ion beam (FIB)-transmission electron microscopy (TEM). The findings provide insights into the grinding mechanisms. The presence of ductile grinding zones and brittle fracture areas on the ground surface reveals that external forces induce dislocation and amorphization within the grain structure, which are key factors in material removal during grinding.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know