Structural Design and Experimental Analysis of the Self-Balancing Lower Limb Exoskeleton Robot
Machines, ISSN: 2075-1702, Vol: 12, Issue: 10
2024
- 1Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
- Mentions1
- Blog Mentions1
- Blog1
Article Description
To facilitate walking rehabilitation training for individuals with lower limb paralysis, a self-balancing exoskeleton robot with 12 degrees of freedom was conceived. The principal structural design was conducted in line with the biomechanics of the human lower limbs, and a kinematic model was formulated. The stipulated gait was resolved by reverse kinematics in MATLAB to derive the joint angle actuation curves. These curves served as the motive input in ADAMS kinematic simulation experiments, yielding a gait trajectory with an error margin of less than 2 mm compared to the prearranged gait, which is within a reasonable range of deviation. Experiments involving walking with the exoskeleton were also executed. The analysis of the six-axis force sensor data from the sole demonstrated that the ground reaction force curve consistently remained within the bounds of the foot’s support area, substantiating the exoskeleton’s capability for stable ambulation with a load. The simulations and walking experiments together verified the soundness of the exoskeleton’s structural design.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know