Mathematical Modeling and the Use of Network Models as Epidemiological Tools
Mathematics, ISSN: 2227-7390, Vol: 10, Issue: 18
2022
- 2Citations
- 26Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Mathematical modeling has served as an epidemiological tool to enhance the modeling efforts of the social and economic impacts of the pandemic. This article reviews epidemiological network models, which are conceived as a flexible way of representing objects and their relationships. Many studies have used these models over the years, and they have also been used to explain COVID-19. Based on the information provided by the Web of Science database, exploratory, descriptive research based on the techniques and tools of bibliometric analysis of scientific production on epidemiological network models was carried out. The epidemiological models used in the papers are diverse, highlighting those using the SIS (Susceptible-Infected-Susceptible), SIR (Susceptible-Infected-Recovered) and SEIR (Susceptible-Exposed-Infected-Removed) models. No model can perfectly predict the future, but they provide a sufficiently accurate approximation for policy makers to determine the actions needed to curb the pandemic. This review will allow any researcher or specialist in epidemiological modeling to know the evolution and development of related work on this topic.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know