Modern Dimensional Analysis-Based Heat Transfer Analysis: Normalized Heat Transfer Curves
Mathematics, ISSN: 2227-7390, Vol: 11, Issue: 3
2023
- 1Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this contribution, the authors continued their initial study on the efficiency of the analysis of experimentally obtained temperature curves, in order to determine some basic parameters that are as simple and reliable as possible, such as “m”, the heat transfer coefficient. After the brief review of the previous results, on which the present article is based, the authors offered a brief argumentation of the importance of dimensional methods, especially the one called modern dimensional analysis, in these theoretical-experimental investigations regarding the propagation of the thermal field of structural elements with solid sections, and especially with tubular-rectangular sections. It could be concluded that modern experimental investigations mostly follow the behavior of models attached to the initial structures, i.e., prototypes, because there are clear advantages in this process of forecasting the behavior of the prototype based on the measurement results obtained on the attached model.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know