Efficient Method for Derivatives of Nonlinear Stiffness Matrix
Mathematics, ISSN: 2227-7390, Vol: 11, Issue: 7
2023
- 4Citations
- 3Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Reports on Mathematics Findings from Kumoh National Institute of Technology Provide New Insights (Efficient Method for Derivatives of Nonlinear Stiffness Matrix)
2023 APR 11 (NewsRx) -- By a News Reporter-Staff News Editor at Math Daily News -- Investigators discuss new findings in mathematics. According to news
Article Description
Structural design often includes geometrically nonlinear analysis to reduce structural weight and increase energy efficiency. The full-order finite element model can perform the geometrically nonlinear analysis, but its computational cost is expensive. Therefore, nonlinear reduced-order models (NLROMs) have been developed to reduce costs. The non-intrusive NLROM has a lower cost than the other due to the approximation of the nonlinear internal force by a polynomial of reduced coordinates based on the Taylor expansion. The constants in the polynomial, named reduced stiffnesses, are derived from the derivative of the structure’s tangential stiffness matrix with respect to the reduced coordinates. The precision of the derivative of the tangential stiffness affects the reduced stiffness, which in turn significantly influences the accuracy of the NLROM. Therefore, this study evaluates the accuracy of the derivative of the tangential stiffness calculated by the methods: finite difference, complex step, and hyper-dual step. Analytical derivatives of the nonlinear stiffness are developed to provide references for evaluating the accuracy of the numerical methods. We propose using the central difference method to calculate the stiffness coefficients of NLROM due to its advantages, such as accuracy, low computational cost, and compatibility with commercial finite element software.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know