Organized Optimization Integration Validation Model for Internet of Things (IoT)-Based Real-Time Applications
Mathematics, ISSN: 2227-7390, Vol: 12, Issue: 15
2024
- 20Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures20
- Readers20
- 20
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- News1
Most Recent Blog
Mathematics, Vol. 12, Pages 2385: Organized Optimization Integration Validation Model for Internet of Things (IoT)-Based Real-Time Applications
Mathematics, Vol. 12, Pages 2385: Organized Optimization Integration Validation Model for Internet of Things (IoT)-Based Real-Time Applications Mathematics doi: 10.3390/math12152385 Authors: Abdullah Alghuried Moahd Khaled
Most Recent News
University of Tabuk Researcher Provides New Study Findings on Mathematics [Organized Optimization Integration Validation Model for Internet of Things (IoT)-Based Real-Time Applications]
2024 AUG 19 (NewsRx) -- By a News Reporter-Staff News Editor at Math Daily News -- New research on mathematics is the subject of a
Article Description
Emerging technology like the Internet of Things (IoT) has great potential for use in real time in many areas, including healthcare, agriculture, logistics, manufacturing, and environmental surveillance. Many obstacles exist alongside the most popular IoT applications and services. The quality of representation, modeling, and resource projection is enhanced through interactive devices/interfaces when IoT is integrated with real-time applications. The architecture has become the most significant obstacle due to the absence of standards for IoT technology. Essential considerations while building IoT architecture include safety, capacity, privacy, data processing, variation, and resource management. High levels of complexity minimization necessitate active application pursuits with variable execution times and resource management demands. This article introduces the Organized Optimization Integration Validation Model (O2IVM) to address these issues. This model exploits k-means clustering to identify complexities over different IoT application integrations. The harmonized service levels are grouped as a single entity to prevent additional complexity demands. In this clustering, the centroids avoid lags of validation due to non-optimized classifications. Organized integration cases are managed using centroid deviation knowledge to reduce complexity lags. This clustering balances integration levels, non-complex processing, and time-lagging integrations from different real-time levels. Therefore, the cluster is dissolved and reformed for further integration-level improvements. The volatile (non-clustered/grouped) integrations are utilized in the consecutive centroid changes for learning. The proposed model’s performance is validated using the metrics of execution time, complexity, and time lag.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know