P-CA: Privacy-Preserving Convolutional Autoencoder-Based Edge–Cloud Collaborative Computing for Human Behavior Recognition
Mathematics, ISSN: 2227-7390, Vol: 12, Issue: 16
2024
- 2Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures2
- Readers2
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- News1
Article Description
With the development of edge computing and deep learning, intelligent human behavior recognition has spawned extensive applications in smart worlds. However, current edge computing technology faces performance bottlenecks due to limited computing resources at the edge, which prevent deploying advanced deep neural networks. In addition, there is a risk of privacy leakage during interactions between the edge and the server. To tackle these problems, we propose an effective, privacy-preserving edge–cloud collaborative interaction scheme based on WiFi, named P-CA, for human behavior sensing. In our scheme, a convolutional autoencoder neural network is split into two parts. The shallow layers are deployed on the edge side for inference and privacy-preserving processing, while the deep layers are deployed on the server side to leverage its computing resources. Experimental results based on datasets collected from real testbeds demonstrate the effectiveness and considerable performance of the P-CA. The recognition accuracy can maintain 88%, although it could achieve about 94.8% without the mixing operation. In addition, the proposed P-CA achieves better recognition accuracy than two state-of-the-art methods, i.e., FedLoc and PPDFL, by 2.7% and 2.1%, respectively, while maintaining privacy.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know