Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules—An Insight into the Release Kinetics
Membranes, ISSN: 2077-0375, Vol: 13, Issue: 7
2023
- 5Citations
- 11Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- Captures11
- Readers11
- 11
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- News1
Most Recent Blog
Membranes, Vol. 13, Pages 674: Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules—An Insight into the Release Kinetics
Membranes, Vol. 13, Pages 674: Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules—An Insight into the Release Kinetics Membranes doi: 10.3390/membranes13070674 Authors:
Most Recent News
Research Reports from NOVA University Lisbon Provide New Insights into Liposomes (Magnetic-Responsive Liposomal Hydrogel Membranes for Controlled Release of Small Bioactive Molecules-An Insight into the Release Kinetics)
2023 AUG 14 (NewsRx) -- By a News Reporter-Staff News Editor at Gene Therapy Daily News -- Investigators publish new report on liposomes. According to
Article Description
This work explores the unique features of magnetic-responsive hydrogels to obtain liposomal hydrogel delivery platforms capable of precise magnetically modulated drug release based on the mechanical responses of these hydrogels when exposed to an external magnetic field. Magnetic-responsive liposomal hydrogel delivery systems were prepared by encapsulation of 1,2-dipalmitoyl-sn-glycero-3-phosphocoline (DPPC) multilayered vesicles (MLVs) loaded with ferulic acid (FA), i.e., DPPC:FA liposomes, into gelatin hydrogel membranes containing dispersed iron oxide nanoparticles (MNPs), i.e., magnetic-responsive gelatin. The FA release mechanisms and kinetics from magnetic-responsive liposomal gelatin were studied and compared with those obtained with conventional drug delivery systems, e.g., free liposomal suspensions and hydrogel matrices, to access the effect of liposome entrapment and magnetic field on FA delivery. FA release from liposomal gelatin membranes was well described by the Korsmeyer–Peppas model, indicating that FA release occurred under a controlled diffusional regime, with or without magnetic stimulation. DPPC:FA liposomal gelatin systems provided smoother controlled FA release, relative to that obtained with the liposome suspensions and with the hydrogel platforms, suggesting the promising application of liposomal hydrogel systems in longer-term therapeutics. The magnetic field, with low intensity (0.08 T), was found to stimulate the FA release from magnetic-responsive liposomal gelatin systems, increasing the release rates while shifting the FA release to a quasi-Fickian mechanism. The magnetic-responsive liposomal hydrogels developed in this work offer the possibility to magnetically activate drug release from these liposomal platforms based on a non-thermal related delivery strategy, paving the way for the development of novel and more efficient applications of MLVs and liposomal delivery systems in biomedicine.
Bibliographic Details
MDPI AG
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know