Dissolution of palladium metal in solvent leaching system with the presence of oxidizing agent
Metals, ISSN: 2075-4701, Vol: 11, Issue: 4
2021
- 5Citations
- 10Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Platinum group metals (PGMs) are important for the manufacture of advanced materials in the field of catalysts and electronic devices. Since the chemical properties of PGMs are very similar to each other, hydrometallurgical processes should be employed to recover PGMs with high purity from either ores or secondary resources. In hydrometallurgical processes for PGMs, the first step is the dissolution of PGMs. For this purpose, inorganic acid solutions with oxidizing agents are generally employed. In this work, nonaqueous solvent leaching systems with a relatively cheap price were employed to investigate the dissolution of pure palladium (Pd) metal. The solvent leaching systems consisted of concentrated hydrochloric acid solution and commercial extractants such as tributyl phosphate (TBP), 7-hydroxydodecan-6-one oxime (LIX 63), and di-n-octyl sulfide (DOS) in the presence of H O as an oxidizing agent. Among the three systems, TBP showed the best efficiency for the dissolution of Pd. The effect of several parameters like TBP concentration, temperature, time, stirring speed and the weight ratio of Pd to TBP/HCl/H O was explored. The dissolution percentage of Pd by the HCl–H O –TBP system was higher than by the HCl–H O–H O system at the same concentration of HCl and H O . The role of TBP in enhancing the dissolution of Pd was discussed on the basis of the interaction between HCl and TBP. Compared to aqueous systems, mass transfer is important in the dissolution of Pd metal by the solvent leaching system. Optimum conditions for the complete dissolution of Pd were obtained.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know