Differential Analysis and Prediction of Planar Shape at the Head and Tail Ends of Medium-Thickness Plate Rolling
Metals, ISSN: 2075-4701, Vol: 13, Issue: 6
2023
- 3Citations
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- Mentions1
- Blog Mentions1
- Blog1
Article Description
This paper aims to improve planar shape prediction accuracy in the rolling process of medium and thick plates. We present a model based on the strip method that addresses limitations in predicting planar shape variations at the head and tail ends of rolled pieces. By analysing the rolling process, we introduce the concept of an imaginary strip longitudinal length difference to represent planar shape characteristics effectively. By analysing the change in metal shape in the rolling deformation zone, the calculation formula for metal volume in the deformation zone is derived. This establishes a relationship between the longitudinal length difference at the rolled piece ends and the metal volume in the deformation zone. The prediction of plane shape difference between the end and the head of medium and medium-thickness plate is realized. The experimental results confirm the feasibility and effectiveness of the proposed method.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know