Effect of AlO on Inclusion Removal in H13 Steels Using High-Basicity LF (Ladle Furnace) Refining Slags
Metals, ISSN: 2075-4701, Vol: 13, Issue: 9
2023
- 1Citations
- 1Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this experiment, a quaternary fluorine-free refining slag system of CaO-SiO-AlO-MgO was selected, with basicity ratios of 2, 4, and 6 and calcium-aluminum ratios of 1.5, 2.1, and 3. High-temperature “slag-steel equilibrium” experiments were conducted to investigate the influence of different basicity ratios and calcium–aluminum ratios on the morphologies, compositions, sizes, and quantities of the inclusions in H13 steel, aiming to improve the cleanliness of H13 steel to meet practical industrial requirements. The experimental results showed that with the increase in the basicity ratio and the calcium–aluminum ratio, the morphologies of the inclusions changed from elliptical to regular circular, with more regular edges. As the basicity ratio increased from 2 to 6, the densities of the inclusions showed a decreasing trend, with values of 40, 35, 30, 25, 32, and 30 inclusions/mm. When the basicity ratio remained the same, the average size of the inclusions in the steel decreased first and then increased with the increases in the calcium–aluminum ratios, with sizes of 1.59 μm, 1.23 μm, and 1.38 μm, respectively. Among these, when the basicity ratio was 6 and the calcium–aluminum ratio was 2.1, the control effect on the densities and sizes of the inclusions was the best, yielding an inclusion density of 25 inclusions/mm and a size of 1.15 μm. Additionally, reducing the AlO content in the slag could reduce the AlO contents in the inclusions, which also promoted improvements in the elastic deformation capacities of the inclusions. With increases in the calcium–aluminum ratios in the slag system, the masses of the inclusions decreased due to the reduced Al contents in the steel. The Al contents in the steel also had an impact on the compositions of the inclusions.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know