Corrosion Mechanism of Press-Hardened Steel with Aluminum-Silicon Coating in Controlled Atmospheric Conditions
Metals, ISSN: 2075-4701, Vol: 15, Issue: 1
2025
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The effect of various atmospheric parameters on the corrosion mechanism of press-hardened steel (PHS) coated with Al-Si (AS) was studied. Quantitative models of the composition of soluble and stable corrosion products were developed. A high chloride concentration led to a localized corrosion due to the presence of cracks in the coating. Increased corrosion resistance of silicon-rich AlFeSi and AlFe at the expense of the AlFe phase with low silicon content was shown. Under low-chloride-deposition conditions, the coating exhibited good corrosion resistance and provided sufficient protection to the underlying steel. The formation of more local anodes and cathodes under conditions of lower relative humidity led to a reduction in the depth of corrosion pits in the steel substrate. Constant high relative humidity and sulphate deposits on the surface were critical for the acceleration of steel corrosion in coating cracks.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know