Human Serum Metabolites as Potential Mediators from Type 2 Diabetes and Obesity to COVID-19 Severity and Susceptibility: Evidence from Mendelian Randomization Study
Metabolites, ISSN: 2218-1989, Vol: 12, Issue: 7
2022
- 9Citations
- 27Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- CrossRef7
- Captures27
- Readers27
- 27
- Mentions1
- Blog Mentions1
- 1
Most Recent Blog
Metabolites, Vol. 12, Pages 598: Human Serum Metabolites as Potential Mediators from Type 2 Diabetes and Obesity to COVID-19 Severity and Susceptibility: Evidence from Mendelian Randomization Study
Metabolites, Vol. 12, Pages 598: Human Serum Metabolites as Potential Mediators from Type 2 Diabetes and Obesity to COVID-19 Severity and Susceptibility: Evidence from Mendelian
Article Description
Obesity, type 2 diabetes (T2D), and severe coronavirus disease 2019 (COVID-19) are closely associated. The aim of this study was to elucidate the casual and mediating relationships of human serum metabolites on the pathways from obesity/T2D to COVID-19 using Mendelian randomization (MR) techniques. We performed two-sample MR to study the causal effects of 309 metabolites on COVID-19 severity and susceptibility, based on summary statistics from genome-wide association studies (GWAS) of metabolites (n = 7824), COVID-19 phenotypes (n = 2,586,691), and obesity (n = 322,154)/T2D traits (n = 898,130). We conducted two-sample network MR analysis to determine the mediating metabolites on the causal path from obesity/T2D to COVID-19 phenotypes. We used multivariable MR analysis (MVMR) to discover causal metabolites independent of body mass index (BMI). Our MR analysis yielded four causal metabolites that increased the risk of severe COVID-19, including 2-stearoylglycerophosphocholine (OR 2.15; 95% CI 1.48–3.11), decanoylcarnitine (OR 1.32; 95% CI 1.17–1.50), thymol sulfate (OR 1.20; 95% CI 1.10–1.30), and bradykinin-des-arg(9) (OR 1.09; 95% CI 1.05–1.13). One significant mediator, gamma-glutamyltyrosine, lay on the causal path from T2D/obesity to severe COVID-19, with 16.67% (0.64%, 32.70%) and 6.32% (1.76%, 10.87%) increased risk, respectively, per one-standard deviation increment of genetically predicted T2D and BMI. Our comprehensive MR analyses identified credible causative metabolites, mediators of T2D and obesity, and obesity-independent causative metabolites for severe COVID-19. These biomarkers provide a novel basis for mechanistic studies for risk assessment, prognostication, and therapeutic purposes in COVID-19.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know