The microfluidic trainer: Design, fabrication and validation of a tool for testing and improving manual skills
Micromachines, ISSN: 2072-666X, Vol: 11, Issue: 9
2020
- 20Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures20
- Readers20
- 20
Article Description
Microfluidic principles have been widely applied for more than 30 years to solve biological and micro-electromechanical problems. Despite the numerous advantages, microfluidic devices are difficult to manage as their handling comes with several technical challenges. We developed a new portable tool, the microfluidic trainer (MT), that assesses the operator handling skills and that may be used for maintaining or improving the ability to inject fluid in the inlet of microfluidic devices for in vitro cell culture applications. After several tests, we optimized the MT tester cell to reproduce the real technical challenges of a microfluidic device. In addition to an exercise path, we included an overfilling indicator and a correct infilling indicator at the inlet (control path). We manufactured the MT by engraving a 3 mm-high sheet of methacrylate with 60W CO laser plotter to create multiple capillary paths. We validated the device by enrolling 21 volunteers (median age 33) to fill both the MT and a commercial microfluidic device. The success rate obtained with MT significantly correlated with those of a commercial microfluidic culture plate, and its 30 min-continuous use for three times significantly improved the performance. Overall, our data demonstrate that MT is a valid assessment tool of individual performances in using microfluidic devices and may represent a low-cost solution to training, improve or warm up microfluidic handling skills.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know