Thermally Induced Knudsen Forces for Contactless Manipulation of a Micro-Object
Micromachines, ISSN: 2072-666X, Vol: 13, Issue: 7
2022
- 3Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations3
- Citation Indexes3
- CrossRef2
- Captures1
- Readers1
Article Description
In this paper, we propose that thermally induced Knudsen forces in a rarefied gas can be exploited to achieve a tweezer-like mechanism that can be used to trap and grasp a micro-object without physical contact. Using the direct simulation Monte Carlo (DSMC) method, we showed that the proposed mechanism is achieved when a heated thin plate, mounted perpendicularly on a flat substrate, is placed close to a colder object; in this case, a beam. This mechanism is mainly due to the pressure differences induced by the thermal edge flows at the corners of the beam and the thermal edge flow at the tip of the thin plate. Specifically, the pressure on the top surface of the beam is smaller than that on its bottom surface when the thin plate is above the beam, while the pressure on the right side of the beam is smaller than that on its left side when the thin plate is located near the right side of the beam. These differences in pressure generate a force, which attracts the beam to the plate horizontally and vertically. Furthermore, this phenomenon is enhanced when the height of the beam is shorter, such that the horizontal and vertical net forces, which attract the beam to the plate, become stronger. The mechanism proposed here was also found to depend significantly on the height of the beam, the temperature difference between the thin plate and the beam, and the Knudsen number.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know