A Predictive Model of Capillary Forces and Contact Diameters between Two Plates Based on Artificial Neural Network
Micromachines, ISSN: 2072-666X, Vol: 14, Issue: 4
2023
- 4Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
- Mentions1
- News Mentions1
- 1
Most Recent News
New Data from Shandong University of Technology Illuminate Research in Artificial Neural Networks (A Predictive Model of Capillary Forces and Contact Diameters between Two Plates Based on Artificial Neural Network)
2023 APR 18 (NewsRx) -- By a News Reporter-Staff News Editor at Network Daily News -- Fresh data on artificial neural networks are presented in
Article Description
Many efforts have been devoted to the forecasting of the capillary force generated by capillary adsorption between solids, which is fundamental and essential in the fields of micro-object manipulation and particle wetting. In this paper, an artificial neural network (ANN) model optimized by a genetic algorithm (GA-ANN) was proposed to predict the capillary force and contact diameter of the liquid bridge between two plates. The mean square error (MSE) and correlation coefficient (R) were employed to evaluate the prediction accuracy of the GA-ANN model, theoretical solution method of the Young–Laplace equation and simulation approach based on the minimum energy method. The results showed that the values of MSE of capillary force and contact diameter using GA-ANN were 10.3 and 0.0001, respectively. The values of R were 0.9989 and 0.9977 for capillary force and contact diameter in regression analysis, respectively, demonstrating the accuracy of the proposed predictive model. The sensitivity analysis was conducted to investigate the influence of input parameters, including liquid volume and separation distance, on the capillary force and contact diameter. The liquid volume and separation distance played dominant roles in affecting the capillary force and contact diameter.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know