Bonding behavior and mechanism of u(Vi) by chemically modified deinococcus radiodurans
Minerals, ISSN: 2075-163X, Vol: 11, Issue: 10
2021
- 3Citations
- 2Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Minerals, Vol. 11, Pages 1108: Bonding Behavior and Mechanism of U(VI) by Chemically Modified Deinococcus radiodurans
Minerals, Vol. 11, Pages 1108: Bonding Behavior and Mechanism of U(VI) by Chemically Modified Deinococcus radiodurans Minerals doi: 10.3390/min11101108 Authors: Xiaoqin Nie Faqin Dong Mingxue
Article Description
The goal of this study is to understand the role of various functional groups on the cell surface when the microorganisms are exposed to uranium (U(VI)). The biomass of Deinococcus radiodurans was subjected to chemical treatments to modify the carboxyl (-C=O), amino (-NH2), phosphate (-PO2), and hydroxyl (-OH) groups, as well as the lipid fraction. The behavior and process of U(VI) biosorption by Deinococcus radiodurans were ascertained, followed by scanning electron microscopy (SEM) combined with energy disperse spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analyses. Carboxyl esterification and amino methylation deteriorated the removal efficiency by 8.0% and 15.5%, respectively, while lipid extraction, phosphate esterification, and hydroxyl methylation improved the removal efficiency by 11.7%, 8.7%, and 4.1%, respectively. The kinetic results revealed that uranium biosorption behavior by the raw and chemically modified biomass fitted well with the model of pseudo-second-order kinetic (R = 0.9949~0.9998). FTIR and SEM-EDS indicated that uranium initially bound with the raw and chemically modified Deinococcus radiodurans, which was probably controlled by ion exchange at the first stage, followed by complexation with the-C=O and-NH2 groups, which especially prefer to bond with P and O atoms on the-PO2 group.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know