Reactive Transport Modeling during Uranium In Situ Leaching (ISL): The Effects of Ore Composition on Mining Recovery
Minerals, ISSN: 2075-163X, Vol: 12, Issue: 11
2022
- 12Citations
- 13Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
What’s New in Mining of Materials That Are Essential for Critical Systems?
Securing access to commodities is one of the top list items of industrialized countries’ agendas. With eco-sustainability issues and global changes, modern mining companies are
Article Description
Unconsolidated sandstone uranium deposits exploited by the in situ leaching (ISL) method, contain complex tetravalent and hexavalent uranium compounds, mostly as UO and UO oxides that have different dissolution rates in sulfuric acid solutions. This work investigates a reactive transport model that takes into account the dissolution of both UO and UO in sulfuric acid solution together with possible interactions with rock minerals during the ISL uranium extraction. Several empirical reaction rate constants were determined during lab experiments on uranium extraction assays, including dissolution rates of tetravalent and hexavalent uranium oxides, and the dissolution rate of rock components by sulfuric acid solution. Effects on the recovery of solution flow rates and ratios between tetravalent and hexavalent uranium compounds are also investigated. The experimental dissolution constants were then used in the proposed reactive transport model to be applied to a real case study in Kazakhstan for comparing the 16 months history matching of an exploitation block consisting of 18 well injectors and 4 producers. The obtained numerical results show good agreement with empirical data gathered during exploitation.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know