Temporal evolution of calcite surface dissolution kinetics
Minerals, ISSN: 2075-163X, Vol: 8, Issue: 6
2018
- 35Citations
- 32Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Minerals, Vol. 8, Pages 256: Temporal Evolution of Calcite Surface Dissolution Kinetics
Minerals, Vol. 8, Pages 256: Temporal Evolution of Calcite Surface Dissolution Kinetics Minerals doi: 10.3390/min8060256 Authors: Irshad Bibi Rolf S. Arvidson Cornelius Fischer Andreas Lüttge
Article Description
This brief paper presents a rare dataset: a set of quantitative, topographic measurements of a dissolving calcite crystal over a relatively large and fixed field of view (~400 μm) and long total reaction time (> 6 h). Using a vertical scanning interferometer and patented fluid flow cell, surface height maps of a dissolving calcite crystal were produced by periodically and repetitively removing reactant fluid, rapidly acquiring a height dataset, and returning the sample to a wetted, reacting state. These reaction-measurement cycles were accomplished without changing the crystal surface position relative to the instrument’s optic axis, with an approximate frequency of one data acquisition per six minutes’ reaction (~10/h). In the standard fashion, computed differences in surface height over time yield a detailed velocity map of the retreating surface as a function of time. This dataset thus constitutes a near-continuous record of reaction, and can be used to both understand the relationship between changes in the overall dissolution rate of the surface and the morphology of the surface itself, particularly the relationship of (a) large, persistent features (e.g., etch pits related to screw dislocations; (b) small, short-lived features (e.g., so-called pancake pits probably related to point defects); (c) complex features that reflect organization on a large scale over a long period of time (i.e., coalescent “super” steps), to surface normal retreat and step wave formation. Although roughly similar in frequency of observation to an in situ atomic force microscopy (AFM) fluid cell, this vertical scanning interferometry (VSI) method reveals details of the interaction of surface features over a significantly larger scale, yielding insight into the role of various components in terms of their contribution to the cumulative dissolution rate as a function of space and time.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know