Precipitation methods using calcium-containing ores for fluoride removal in wastewater
Minerals, ISSN: 2075-163X, Vol: 9, Issue: 9
2019
- 44Citations
- 81Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
F-containing wastewater does great harm to human health and the ecological environment and thus needs to be treated efficiently. In this paper, the new calcium-containing precipitant calcite and aided precipitant fluorite were adopted to purify F-containing wastewater. Relevant reaction conditions, such as reaction time, oscillation rate, dosage of hydrochloric acid, calcite dosage and the assisting sedimentation performance of fluorite, and action mechanism are analyzed. The experiment showed that the removal rate of fluoride in simulated wastewater reached 96.20%, when the reaction time, the dosage of calcite, the dosage of 5% dilute hydrochloric acid, and the oscillation rate was 30 min, 2 g/L, 21.76 g/L, and 160 r/min, respectively. Moreover, the removal rate of fluoride in the actual F-containing smelting wastewater reaches approximately 95% under the optimum condition of calcite dosage of 12 g/L, reaction time of 30 min, and oscillation rate of 160 r/min. The addition of fluorite significantly improves the sedimentation performance of the reactive precipitates. The experimental results showed that calcite and fluorite can effectively reduce the concentration of fluoride ions in F-containing wastewater and solve the problem of slow sedimentation of reactive precipitates.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know