PlumX Metrics
Embed PlumX Metrics

Asperulosidic Acid Ameliorates Renal Interstitial Fibrosis via Removing Indoxyl Sulfate by Up-Regulating Organic Anion Transporters in a Unilateral Ureteral Obstruction Mice Model

Molecules, ISSN: 1420-3049, Vol: 28, Issue: 23
2023
  • 2
    Citations
  • 0
    Usage
  • 1
    Captures
  • 2
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

Researchers' from Southern Medical University Report Details of New Studies and Findings in the Area of Health and Medicine (Asperulosidic Acid Ameliorates Renal Interstitial Fibrosis via Removing Indoxyl Sulfate by Up-Regulating Organic Anion ...)

2023 DEC 25 (NewsRx) -- By a News Reporter-Staff News Editor at Genomics & Genetics Daily -- Investigators publish new report on agriculture. According to

Article Description

Asperulosidic acid is a bioactive iridoid isolated from Hedyotis diffusa Willd. with anti-inflammatory and renal protective effects. However, its mechanism on renal interstitial fibrosis has not been elucidated yet. The present study aims to explore whether asperulosidic acid could retard renal fibrosis by reducing the circulating indoxyl sulfate (IS), which is a uremic toxin and accelerates chronic kidney disease progression by inducing renal fibrosis. In this paper, a unilateral ureteral obstruction (UUO) model of Balb/C mice was established. After the mice were orally administered with asperulosidic acid (14 and 28 mg/kg) for two weeks, blood, liver and kidney were collected for biochemical, histological, qPCR and Western blot analyses. Asperulosidic acid administration markedly reduced the serum IS level and significantly alleviated the histological changes in glomerular sclerosis and renal interstitial fibrosis. It is noteworthy that the mRNA and protein levels of the organic anion transporter 1 (OAT1), OAT3 and hepatocyte nuclear factor 1α (HNF1α) in the kidney were significantly increased, while the mRNA expressions of cytochrome P450 2e1 (Cyp2e1) and sulfotransferase 1a1 (Sult1a1) in the liver were not altered after asperulosidic acid administration. These results reveal that asperulosidic acid could accelerate the renal excretion of IS by up-regulating OATs via HNF1α in UUO mice, thereby alleviating renal fibrosis, but did not significantly affect its production in the liver, which might provide important information for the development of asperulosidic acid.

Bibliographic Details

Wang, Jing; Shi, Birui; Pan, Yueqing; Yang, Zhuan; Zou, Wei; Liu, Menghua

MDPI AG

Chemistry; Biochemistry, Genetics and Molecular Biology; Pharmacology, Toxicology and Pharmaceutics

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know