Unveiling the Promoting Mechanism of H Activation on CuFeO Catalyst for Low-Temperature CO Oxidation
Molecules, ISSN: 1420-3049, Vol: 29, Issue: 14
2024
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- Blog Mentions1
- Blog1
Article Description
The effect of H activation on the performance of CuFeO catalyst for low-temperature CO oxidation was investigated. The characterizations of XRD, XPS, H-TPR, O-TPD, and in situ DRIFTS were employed to establish the relationship between physicochemical property and catalytic activity. The results showed that the CuFeO catalyst activated with H at 100 °C displayed higher performance, which achieved 99.6% CO conversion at 175 °C. In addition, the H activation promoted the generation of Fe species, and more oxygen vacancy could be formation with higher concentration of O species, which improved the migration rate of oxygen species in the reaction process. Furthermore, the reducibility of the catalyst was enhanced significantly, which increased the low-temperature activity. Moreover, the in situ DRIFTS experiments revealed that the reaction pathway of CO oxidation followed MvK mechanism at low temperature (<175 °C), and both MvK and L-H mechanism was involved at high temperature. The Cu-CO and carbonate species were the main reactive intermediates, and the H activation increased the concentration of Cu species and accelerated the decomposition carbonate species, thus improving the catalytic performance effectively.
Bibliographic Details
MDPI AG
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know