Bar Adsorptive Microextraction Approach for Trace Determination of Local Anesthetics in Urine Matrices
Molecules, ISSN: 1420-3049, Vol: 30, Issue: 1
2025
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
The present work reports the development, optimization, and validation, of a methodology to determine lidocaine, procaine, tetracaine, and benzocaine in urine matrices. Two extractive preconcentration techniques, solid-phase microextraction (SPME) LC Tips and bar adsorptive microextraction (BAμE), were studied and applied to the four target anesthetics, followed by gas chromatography-mass spectrometry (GC-MS) analysis. Several parameters that could affect microextraction and back-extraction were optimized using two different designs of experiments (Box–Behnken and full-factorial) to maximize extraction efficiency from aqueous media. Under optimized experimental conditions, the BAμE technique showed better performance than SPME LC Tips and was chosen for validation assays and urine sample analysis. In blank urine, the BAµE/GC-MS methodology revealed suitable sensitivity (LOD between 2 and 18 ng/mL), good linearity (r ≥ 0.9945) between 0.5 and 30.0 µg/mL and recovery yields of 30.3–97.9%. Good precision (%RSD ≤ 8.8%) and accuracy (bias % between −15.9 and 15.0%) values were achieved. The developed methodology was successfully applied to the target anesthetics analysis of volunteers’ urine matrices and proved to be an environmentally friendly alternative to monitor trace levels of local anesthetics in complex matrices compared to other extraction techniques.
Bibliographic Details
MDPI AG
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know