The Oxygen Vacancy Defect of ZnO/NiO Nanomaterials Improves Photocatalytic Performance and Ammonia Sensing Performance
Nanomaterials, ISSN: 2079-4991, Vol: 12, Issue: 3
2022
- 57Citations
- 50Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations57
- Citation Indexes57
- 57
- CrossRef47
- Captures50
- Readers50
- 50
Article Description
In this paper, ZnO/NiO composites rich in oxygen vacancies are prepared by the solvothermal method and reduction method. In the test, through the use of X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM), diffuse reflectance spectroscopy (DRS), photoluminescence spectroscopy (PL), and electron paramagnetic resonance (EPR), we effectively prove the existence of phase, morphology and oxygen vacancies in the material. Through the photocatalysis test and gas sensitivity test, it is found that 10% Ni doped OZN-10 has the best photocatalytic activity and gas sensitivity characteristics. The degradation rate of methylene blue (MB) was 98%. The gas sensitivity test shows that OZN-10 has good selectivity, good response performance (3000 ppm, 27,887%) and excellent response recovery time (response time: 50 s, recovery time: 5–7 s) for saturated NH3 gas at standard atmospheric pressure (101.325 KPa) and room temperature (25 °C). The synergistic effect of oxygen vacancy as the center of a trap and p–n heterojunction forming an electric potential field at the interface is explained, and the mechanism of improving photocatalysis and gas sensitivity is analyzed. This work will provide an innovative vision for dual-performance oxygen vacancy modification of heterojunctions through photocatalysis.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know