Synergetic effects of silver nanowires and graphene oxide on thermal conductivity of epoxy composites
Nanomaterials, ISSN: 2079-4991, Vol: 9, Issue: 9
2019
- 39Citations
- 32Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
One-dimensional silver nanowires (AgNWs) and two-dimensional graphene oxide (GO) were combined to construct a three-dimensional network structure. The AgNWs can effectively inhibit stacking of adjacent GO sheets by occupying regions between layers of GO. Moreover, the GO sheets embedded in the gaps of the AgNWs network increase the interfacial contact area between the AgNWs and the epoxy matrix, resulting in the formation of more efficient phonon transport channels. To prepare an epoxy-based thermal conductive composite, hybrid networks were fabricated and added to epoxy resin using a solution mixing method. Significant synergistic effects were observed between the AgNWs and GO sheets. The thermal conductivity of epoxy composites filled with 10 wt.% AgNW/GO hybrids was found to be 1.2 W/mK and the impact strength was 28.85 KJ/m, which are higher than the corresponding values of composites containing AgNWs or GO sheets alone. Thus, the thermal conductivity and impact strength of the epoxy composites were improved. The additive effects are mainly owing to the improved interfacial contact between the hybrid fillers and the epoxy resin, resulting in a more efficient phonon transport network. The use of hybrid fillers with different structures is a simple and scalable strategy for manufacturing high-performance thermally conductive materials for electronic packaging.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know