Stabilization of vitamin D in pea protein isolate nanoemulsions increases its bioefficacy in rats
Nutrients, ISSN: 2072-6643, Vol: 11, Issue: 1
2019
- 24Citations
- 70Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations24
- Citation Indexes24
- 24
- CrossRef22
- Captures70
- Readers70
- 70
Article Description
Micronutrient delivery formulations based on nanoemulsions can enhance the absorption of nutrients and bioactives, and thus, are of great potential for food fortification and supplementation strategies. The aim was to evaluate the bioefficacy of vitamin D (VitD) encapsulated in nanoemulsions developed by sonication and pH-shifting of pea protein isolate (PPI) in restoring VitD status in VitD-deficient rats. Weaned male albino rats (n = 35) were fed either normal diet AIN-93G (VitD 1000 IU/kg) (control group; n = 7) or a VitD-deficient diet (<50 IU/kg) for six weeks (VitD-deficient group; n = 28). VitD-deficient rats were divided into four subgroups (n = 7/group). Nano-VitD and Oil-VitD groups received a dose of VitD (81 µg) dispersed in either PPI-nanoemulsions or in canola oil, respectively, every other day for one week. Their control groups, Nano-control and Oil-control, received the respective delivery vehicles without VitD. Serum 25-hydroxyvitamin D [25(OH)VitD], parathyroid hormone (PTH), Ca, P, and alkaline phosphatase (ALP) activity were measured. After one week of treatment, the VitD-deficient rats consuming Nano-VitD recovered from Vitamin D deficiency (VDD) as compared against baseline and had serum 25(OH)VitD higher than the Nano-control. Enhancement in VitD status was followed with expected changes in serum PTH, Ca, P, and ALP levels, as compared against the controls. Stabilization of VitD within PPI-based nanoemulsions enhances its absorption and restores its status and biomarkers of bone resorption in VitD-deficient rats.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know