Effect of heat-killed lactobacillus casei dkgf7 on a rat model of irritable bowel syndrome
Nutrients, ISSN: 2072-6643, Vol: 13, Issue: 2, Page: 1-11
2021
- 20Citations
- 49Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations20
- Citation Indexes20
- 20
- CrossRef13
- Captures49
- Readers49
- 49
Article Description
Non-viable bacteria, referred to as “paraprobiotics,” have attracted attention as potentially safer alternatives to probiotics. The aim of this study was to investigate the efficacy of heat-killed Lactobacillus casei DKGF7 on the symptomatic improvement of irritable bowel syndrome (IBS) in a rat disease model and to elucidate the underlying mechanisms that contribute to the beneficial effects of heat-killed probiotics. Seven male Wistar rats were induced with IBS by restraint stress and administered heat-killed L. casei DKGF7 for four weeks and then compared with seven rats in the control group. Stool consistency measured four weeks after initial treatment was the primary outcome measure. To investigate the mechanism of action of the heat-killed bacteria on IBS, we measured serum corticosterone levels, inflammatory cytokines in colon tissue, and expression of tight junction proteins (TJPs) in the epithelium. The treatment group showed significantly better stool consistency scores than the control group at week 4, as well as at every measured time point (all p values < 0.05). The treatment group showed lower serum corticosterone levels, lower colonic inflammatory cytokine levels, and higher expression of TJPs compared with the control group. Paraprobiotics such as heat-killed L. casei DKGF7 can improve stool consistency in a rat IBS model, which may indicate a potential therapeutic strategy for IBS treatment.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know