Iron in lung pathology
Pharmaceuticals, ISSN: 1424-8247, Vol: 12, Issue: 1
2019
- 35Citations
- 66Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations35
- Citation Indexes35
- 35
- CrossRef31
- Captures66
- Readers66
- 66
Review Description
The lung presents a unique challenge for iron homeostasis. The entire airway is in direct contact with the environment and its iron particulate matter and iron-utilizing microbes. However, the homeostatic and adaptive mechanisms of pulmonary iron regulation are poorly understood. This review provides an overview of systemic and local lung iron regulation, as well as the roles of iron in the development of lung infections, airway disease, and lung injury. These mechanisms provide an important foundation for the ongoing development of therapeutic applications.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know