A Novel Analytical Interpolation Approach for Determining the Locus of a Zoom Lens Optical System
Photonics, ISSN: 2304-6732, Vol: 11, Issue: 4
2024
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions2
- Blog Mentions1
- Blog1
- News Mentions1
- News1
Most Recent Blog
Photonics, Vol. 11, Pages 303: A Novel Analytical Interpolation Approach for Determining the Locus of a Zoom Lens Optical System
Photonics, Vol. 11, Pages 303: A Novel Analytical Interpolation Approach for Determining the Locus of a Zoom Lens Optical System Photonics doi: 10.3390/photonics11040303 Authors: Jiwon
Most Recent News
New Photonics Study Results from Kumoh National Institute of Technology Described (A Novel Analytical Interpolation Approach for Determining the Locus of a Zoom Lens Optical System)
2024 APR 15 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Science Daily -- Research findings on photonics are discussed in a new
Article Description
In an optical system with multiple lens groups and increased zoom magnification levels, achieving a smooth zoom locus is increasingly difficult. Traditional methods for calculating zoom loci often involve complex and time-consuming formulas. Consequently, we utilized the Padé approximation in optical design software to compute the zoom locus analytically, irrespective of the number of zoom positions (nodes). The initial data were used to assign orders to rational function polynomials, facilitating Padé approximation. If the image surface extended beyond the depth of focus (DOF), a node was added, with adjustments made until it fell within the DOF range. Furthermore, Padé approximation was performed to prevent singularities. The loci of all lens groups in the optical system can be expressed in a rational function format. Specifically, the numerator and denominator polynomial degrees were 20° and 1°, respectively, with their sum being the total number of nodes. In addition, we calculated the zoom locus by increasing the numerator sequence to minimize the occurrence of the singularity and added the node automatically to enable zoom locus calculation in all optical systems. Accordingly, we could make fast calculations, unlike conventional methods, using complex and time-consuming simultaneous equations. Therefore, we could express the locus of the compensated group in the form of a smooth function, as presently shown.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know