Adaptive Synchronization of Fractional-Order Complex-Valued Chaotic Neural Networks with Time-Delay and Unknown Parameters
Physics (Switzerland), ISSN: 2624-8174, Vol: 3, Issue: 4, Page: 924-939
2021
- 1Citations
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations1
- Citation Indexes1
- CrossRef1
Article Description
The purpose of this paper is to study and analyze the concept of fractional-order complex-valued chaotic networks with external bounded disturbances and uncertainties. The synchronization problem and parameter identification of fractional-order complex-valued chaotic neural networks (FOCVCNNs) with time-delay and unknown parameters are investigated. Synchronization between a driving FOCVCNN and a response FOCVCNN, as well as the identification of unknown parameters are implemented. Based on fractional complex-valued inequalities and stability theory of fractional-order chaotic complex-valued systems, the paper designs suitable adaptive controllers and complex update laws. Moreover, it scientifically estimates the uncertainties and external disturbances to establish the stability of controlled systems. The computer simulation results verify the correctness of the proposed method. Not only a new method for analyzing FOCVCNNs with time-delay and unknown complex parameters is provided, but also a sensitive decrease of the computational and analytical complexity.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know