Spring Wheat’s Ability to Utilize Nitrogen More Effectively Is Influenced by Root Phene Variation
Plants, ISSN: 2223-7747, Vol: 12, Issue: 5
2023
- 3Citations
- 11Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Plants, Vol. 12, Pages 1010: Spring Wheat’s Ability to Utilize Nitrogen More Effectively Is Influenced by Root Phene Variation
Plants, Vol. 12, Pages 1010: Spring Wheat’s Ability to Utilize Nitrogen More Effectively Is Influenced by Root Phene Variation Plants doi: 10.3390/plants12051010 Authors: Rumesh Ranjan
Most Recent News
Researchers from Indian Council of Agricultural Research (ICAR) Indian Agricultural Research Institute (IARI) Report on Findings in Sustainable Food and Agriculture (Spring Wheat's Ability to Utilize Nitrogen More Effectively Is Influenced by ...)
2023 MAR 27 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- Data detailed on sustainable food and agriculture have
Article Description
Genetic improvement for nitrogen use efficiency (NUE) can play a very crucial role in sustainable agriculture. Root traits have hardly been explored in major wheat breeding programs, more so in spring germplasm, largely because of the difficulty in their scoring. A total of 175 advanced/improved Indian spring wheat genotypes were screened for root traits and nitrogen uptake and nitrogen utilization at varying nitrogen levels in hydroponic conditions to dissect the complex NUE trait into its component traits and to study the extent of variability that exists for those traits in Indian germplasm. Analysis of genetic variance showed a considerable amount of genetic variability for nitrogen uptake efficiency (NUpE), nitrogen utilization efficiency (NUtE), and most of the root and shoot traits. Improved spring wheat breeding lines were found to have very large variability for maximum root length (MRL) and root dry weights (RDW) with strong genetic advance. In contrast to high nitrogen (HN), a low nitrogen (LN) environment was more effective in differentiating wheat genotypes for NUE and its component traits. Shoot dry weight (SDW), RDW, MRL, and NUpE were found to have a strong association with NUE. Further study revealed the role of root surface area (RSA) and total root length (TRL) in RDW formation as well as in nitrogen uptake and therefore can be targeted for selection to further the genetic gain for grain yield under high input or sustainable agriculture under limited inputs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know