The Effect of Heat Treatment on a 3D-Printed PLA Polymer’s Mechanical Properties
Polymers, ISSN: 2073-4360, Vol: 15, Issue: 6
2023
- 15Citations
- 64Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef3
- Captures64
- Readers64
- 64
Article Description
Three-dimensional printing is a useful and common process in additive manufacturing nowadays. The advantage of additive polymer technology is its rapidity and design freedom. Polymer materials’ mechanical properties depend on the process parameters and the chemical composition of the polymer used. Mechanical properties are very important in product applicability. The mechanical properties of polymers can be enhanced by heat treatment. Additive-manufactured PLA’s mechanical properties and structure can be modified via heat treatment after the 3D printing process. The goal of this research was to test the effect of heat treatment on the mechanical and structural parameters of additive-manufactured PLA. This was achieved via the FDM processing of standard PLA tensile test specimens with longitudinal and vertical printing orientations. After printing, the test specimens were heat-treated at 55 °C, 65 °C and 80 °C for 5 h and after being held at 20 °C for 15 h. The printed and heat-treated specimens were tested using tensile tests and microscopy. Based on the test results, we can conclude that the optimal heat treatment process temperature was 65 °C for 5 h. Under the heat treatment, the test specimens did not show any deformation, the tensile strength increased by 35% and the porosity of the PLA structure decreased.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know