Preparation and Characterization of Polyvinyl Alcohol (PVA)/Carbonized Waste Rubber Biocomposite Films
Polymers, ISSN: 2073-4360, Vol: 16, Issue: 8
2024
- 2Citations
- 10Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The technological properties of composite materials (thermal, strength, rheology, electrical and morphology) are very important parameters for high-performance applications. In this study, we aimed to improve the properties of PVA by using carbon materials obtained by the pyrolysis of waste tires, with the aim of recycling them instead of disposing of them. For this purpose, PVA biocomposite films containing carbonized waste rubber at different rates were prepared. The thermal properties of the prepared biocomposite films were examined via thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC) methods. While rheological measurements were carried out with a rheometer, bulk conductivities were measured with a pico-ammeter. In addition, the morphology of biocomposite films was determined via field emission scanning electron microscopy. The nanomechanical properties of biocomposite film was investigated via XPM analyses. According to the rheological measurements and nanoindentation hardness results, it is understood that as the amount of carbonized waste rubber increases, flexibility decreases and harder and brittle structures are observed in biocomposite films. The electrical measurement results showed that electrical conductivity increased as the amount of carbonized waste rubber increased. When all the results obtained were evaluated, it could be concluded that biocomposite films obtained by increasing the electrical conductivity and hardness of PVA can be used in the electronics industry.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know