PlumX Metrics
Embed PlumX Metrics

Digital Light Processing Route for 3D Printing of Acrylate-Modified PLA/Lignin Blends: Microstructure and Mechanical Performance

Polymers, ISSN: 2073-4360, Vol: 16, Issue: 10
2024
  • 3
    Citations
  • 0
    Usage
  • 3
    Captures
  • 1
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    3
  • Captures
    3
  • Mentions
    1
    • Blog Mentions
      1
      • Blog
        1

Article Description

In this study, digital light processing (DLP) was utilized to generate 3D-printed blends composed of photosensitive acrylate-modified polylactic acid (PLA) resin mixed with varying weight ratios of lignin extracted from softwood, typically ranging from 5 wt% to 30 wt%. The microstructure of these 3D-printed blends was examined through X-ray microtomography. Additionally, the tensile mechanical properties of all blends were assessed in relation to the weight ratio and post-curing treatment. The results suggest that post-curing significantly influences the tensile properties of the 3D-printed composites, especially in modulating the brittleness of the prints. Furthermore, an optimal weight ratio was identified to be around 5 wt%, beyond which UV light photopolymerization experiences compromises. These findings regarding acrylate-modified PLA/lignin blends offer a cost-effective alternative for producing 3D-printed bio-sourced components, maintaining technical performance in reasonable-cost, low-temperature 3D printing, and with a low environmental footprint.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know