Innovative Blown Multi-Micro-Nano-Layer Coextrusion: Insights into Rheology and Process Stability
Polymers, ISSN: 2073-4360, Vol: 17, Issue: 1
2025
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- Blog Mentions1
- Blog1
Most Recent Blog
Polymers, Vol. 17, Pages 57: Innovative Blown Multi-Micro-Nano-Layer Coextrusion: Insights into Rheology and Process Stability
Polymers, Vol. 17, Pages 57: Innovative Blown Multi-Micro-Nano-Layer Coextrusion: Insights into Rheology and Process Stability Polymers doi: 10.3390/polym17010057 Authors: Lazaros Vozikis Skander Mani Abderrahim Maazouz
Article Description
The present study introduces an innovative blown coextrusion die technology designed to address a critical gap in the production of multilayer films. Unlike conventional systems, this novel die allows for the creation of films with a high number of layers, ensuring layer integrity even in the micro-nano scale. A key advancement of this die is its ability to increase the number of layers without extending the residence time since it does not require an additional multiplier element. The risk of thermal degradation can, thus be, minimized. The die can easily be combined with existing cast coextrusion technologies, making it very versatile. Stability maps were developed to define processability and, in association with rheological analysis, optimal processing windows were determined. This study highlights the potential of enhancing material efficiency by increasing the number of layers while reducing the need for high percentages of EVOH. The produced multilayer films exhibited strong layer adhesion without the use of tie layers, thus improving recyclability and supporting sustainability goals.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know