Mechanistic Investigations of the Synthesis of Lactic Acid from Glycerol Catalyzed by an Iridium–NHC Complex
Processes, ISSN: 2227-9717, Vol: 10, Issue: 4
2022
- 8Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the present work, the reaction pathways and the origin of catalytic activity for the production of lactic acid from glycerol catalyzed by an iridium–heterocyclic carbene (Iridium-NHC) complex at 383.15 K were investigated by DFT study at the M06-D3/6-311++G (d, p)//SDD level. Compared to the noncatalytic reaction pathway, the energy barrier sharply decreased from 75.2 kcal mol to 16.8 kcal mol with the introduction of the iridium–NHC complex. The catalytic reaction pathway catalyzed by the iridium–NHC complex with a coordinated hydroxide included two stages: the dehydrogenation of glycerol to 2,3-dihydroxypropanal, and the subsequent isomerization to lactic acid. Two reaction pathways, including dehydrogenation in terminal and that in C2-H, were studied. It was found that the formation of dihydroxyacetone from the H-removal in C2-H was more favorable, which might have been due to the lower energy of LUMO, whereas dihydroxyacetone could be easily transferred to 2,3-dihydroxypropanal. The analyses of electrostatic potential (ESP), hardness, and f-Fukui function also confirmed that the iridium–NHC complex acted as a hydrogen anion receptor and nucleophilic reaction center to highly promote the conversion of glycerol to lactic acid.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know