Exploratory Research on Drainage Structure of Highway Tunnel Based on Reducing the Risk of Crystallization Blockage
Processes, ISSN: 2227-9717, Vol: 10, Issue: 7
2022
- 7Citations
- 11Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Processes, Vol. 10, Pages 1319: Exploratory Research on Drainage Structure of Highway Tunnel Based on Reducing the Risk of Crystallization Blockage
Processes, Vol. 10, Pages 1319: Exploratory Research on Drainage Structure of Highway Tunnel Based on Reducing the Risk of Crystallization Blockage Processes doi: 10.3390/pr10071319 Authors:
Article Description
Crystal blockages of tunnel drainage systems severely undermine the tunnel lining structure and operation safety. In order to reduce the risk of crystal blockages of tunnel drainage systems, the distribution of highway tunnel defects was identified through a field survey, indoor test, and literature analysis, and an optimization method of tunnel drainage structures was proposed. The research suggested the following: (1) Lining water leakage and construction joint water leakage were the most common defects in the tunnel drainage system of Renhua–Xinfeng Expressway and Yingde–Huaiji Expressway in Guangdong Province, accounting for 60% and 32% of total defects, respectively. The number of defects that occurred in the drainage system of the tunnel was larger in the granite formation, with the number of road seepage and inspection chamber crystallization incidents reaching 2.5/km and 2.8/km, respectively. (2) The groundwater was mainly alkaline with a pH value of 8~12, Ca (107 mg/L) was the cation with the largest ion concentration, and HCO − (165 mg/L) was the anion with the largest ion concentration. The crystals in the tunnel drainage system were predominantly square, spindle, and rhombic calcite and aragonite composed of CaCO, mixed with a small amount of sediment. (3) To reduce the risk of crystal blockages of the tunnel drainage system and ensure tunnel lining structure safety, a threefold optimization measure was proposed, namely, setting one-directional drainage pipes between the cable trench and the roadside blind drainage ditch, applying “π” type anti-crystallization drainage water-stop belts at the circular construction joints in the secondary lining, and both increasing the slope of the transverse drainage pipe and using an anti-crystallization drainage pipe. The research results will play an important role in guiding the design, construction, and maintenance of highway tunnel drainage systems in China.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know