Assessment of Microsilica as a Raw Material for Obtaining Mullite–Silica Refractories
Processes, ISSN: 2227-9717, Vol: 12, Issue: 1
2024
- 1Citations
- 1Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The possibility of using microsilica in the production of mullite–silica refractories was assessed. The chemical and mineralogical compositions of the raw materials, refractory Arkalyk clay and microsilica, were studied. It has been found that primary mullite and quartz formation occurs due to dehydration of kaolinite with the formation of intermediate metakaolinite. The introduction of alumina and microsilica into the charge composition promotes the formation of secondary mullite due to the interaction of aluminum oxide and highly dispersed chemically active microsilica. Free silica in compositions undergoes polymorphic transformations with the formation of cristobalite and tridymite. Mullite–silica refractories with an open porosity of 21%, a compressive strength of 42 MPa, and a thermal deformation temperature under the load of 0.2 MPa–1350 °C were obtained.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know