A three-stage coordinated optimization scheduling strategy for a CCHP microgrid energy management system
Processes, ISSN: 2227-9717, Vol: 8, Issue: 2
2020
- 17Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
With renewable generation resources and multiple load demands increasing, the combined cooling, heating, and power (CCHP) microgrid energy management system has attracted much attention due to its high efficiency and low emissions. In order to realize the integration of substation resources and solve the problems of inaccurate, random, volatile and intermittent load forecasting, we propose a three-stage coordinated optimization scheduling strategy for a CCHPmicrogrid. The strategy contains three stages: a day-ahead economic scheduling stage, an intraday rolling optimization stage, and a real-time adjustment stage. Forecasting data with different accuracy at different time scales were used to carry out multilevel coordination and gradually improve the scheduling plan. A case study was used to verify that the proposed scheduling strategy can mitigate and eliminate the load forecasting error of renewable energy (for power balance and scheduling economy).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know