Heterotrophic plate count for bottledwater safety management
Processes, ISSN: 2227-9717, Vol: 8, Issue: 6
2020
- 10Citations
- 34Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Heterotrophic bacteria are able to form biofilms in water processing systems, adhering to pipe materials and colonizing surfaces. The aim of our research was to identify the critical points in the process of bottled water production at which controls can be applied to prevent, reduce, or eliminate water safety hazards. Microbiological monitoring was conducted using the plate count method and luminometry. To identify the bacterial isolates, we used polyphasic identification based on biochemical tests and molecular analysis using ribosomal RNA. The heterotrophic plate counts were higher in the water filtration station, ultrafiltration (UV) disinfection station, and holding tank. At these points of the industrial process, the water is stagnant or there is poor flow. Molecular analysis identified the bacterial isolates as belonging to Acinetobacter, Agrobacterium, Aeromonas, Brevundimonas, Citrobacter, Enterobacter, Klebsiella, Pantoea, and Rhizobium genera. Bacterial isolates showed various levels of biofilm formation, and the best adhesion properties were exhibited by the Aeromonas hydrophila and Citrobacter freundii strains.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know