Experimental study on pressure distribution and flow coefficient of globe valve
Processes, ISSN: 2227-9717, Vol: 8, Issue: 7
2020
- 22Citations
- 35Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this study, the pressure distribution and flow coefficient of a globe valve are investigated with a series of experiments conducted in a flow test loop. The experiments are performed on a three-inch model test valve from an eight-inch ANSI (American National Standards Institute) B16.11-Class 2500# prototype globe valve with various pump speeds and full range of valve openings. Both inherent and installed flow characteristics are measured, and the results show that the flow coefficient depends not only on the valve geometry and valve opening but also on the Reynolds number. When the Reynolds number exceeds a certain value, the flow coefficients are stable. In addition, the pressures at different positions in the upstream and the downstream of the valve are measured and compared with recommendation per ANSI/ISA-75.01 standard. The results show that, in single-phase flow, the discrepancies in pressure between different measurement locations within close range of 10 nominal diameter from the valve are inconsiderable.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know