Fabrication of macroporous nafion membrane from silica crystal for ionic polymer-metal composite actuator
Processes, ISSN: 2227-9717, Vol: 8, Issue: 11, Page: 1-7
2020
- 10Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Nafion membrane with macropores is synthesized from silica crystal and composited with Pt nanoparticles to fabricate macroporous ionic polymer-metal composite (M-IPMC) actuator. M-IPMC shows highly dispersed small Pt nanoparticles on the porous walls of Nafion membrane. After the electromechanical performance test, M-IPMC actuator demonstrates a maximum displacement output of 19.8 mm and a maximum blocking force of 8.1 mN, far better than that of IPMC actuator without macroporous structure (9.6 mm and 2.8 mN) at low voltages (5.8–7.0 V). The good electromechanical performance can be attributed to interconnected macropores that can improve the charge transport during the actuation process and can allow the Pt nanoparticles to firmly adsorb, leading to a good electromechanical property.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know