Mechanical Design of a Biped Robot FORREST and an Extended Capture-Point-Based Walking Pattern Generator
Robotics, ISSN: 2218-6581, Vol: 12, Issue: 3
2023
- 3Citations
- 2Captures
- 2Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Chemnitz University of Technology Researcher Publishes New Study Findings on Robotics (Mechanical Design of a Biped Robot FORREST and an Extended Capture-Point-Based Walking Pattern Generator)
2023 JUN 27 (NewsRx) -- By a News Reporter-Staff News Editor at Robotics & Machine Learning Daily News Daily News -- Researchers detail new data
Article Description
In recent years, many studies have shown that soft robots with elastic actuators enable robust interaction with the environment. Compliant joints can protect mechanical systems and provide better dynamic performance, thus offering huge potential for further developments of humanoid robots. This paper proposes a new biped robot. The new robot combines a torque sensor-based active elastic hip and a spring-based passive elastic knee/ankle. In the first part, the mechanical design is introduced, and in the second part, the kinematics and dynamics capabilities are described. Furthermore, we introduce a new extended capture-point-based walking pattern generator that calculates footstep positions, which are used as input for the controller of our new biped robot. The main contribution of this article is the novel mechanical design and an extended walking pattern generator. The new design offers a unique solution for cable-driven bipeds to achieve both balancing and walking. Meanwhile, the new walking pattern generator can generate smooth desired curves, which is an improvement over traditional generators that use a constant zero-moment-point (ZMP). A simple cartesian controller is applied to test the performance of the walking pattern generator. Although the robot has been built, all experiments regarding the pattern generator are still simulated using MATLAB/Simulink. The focus of this work is to analyze the mechanical design and show the capabilities of the robot by applying a new pattern generator.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know