Neural network approach to forecast hourly intense rainfall using GNSS precipitable water vapor and meteorological sensors
Remote Sensing, ISSN: 2072-4292, Vol: 11, Issue: 8
2019
- 69Citations
- 70Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This work presents a methodology for the short-term forecast of intense rainfall based on a neural network and the integration of Global Navigation and Positioning System (GNSS) and meteorological data. Precipitable water vapor (PWV) derived from GNSS is combined with surface pressure, surface temperature and relative humidity obtained continuously from a ground-based meteorological station. Five years of GNSS data from one station in Lisbon, Portugal, are processed. Data for precipitation forecast are also collected from the meteorological station. Spaceborne Spinning Enhanced Visible and Infrared Imager (SEVIRI) data of cloud top measurements are also gathered, providing collocated information on an hourly basis. In previous studies it was found that the time-varying PWV is correlated with rainfall and can be used to detected heavy rain. However, a significant number of false positives were found, meaning that the evolution of PWV does not contain enough information to infer future rain. In this work, a nonlinear autoregressive exogenous neural network model (NARX) is used to process the GNSS and meteorological data to forecast the hourly precipitation. The proposed methodology improves the detection of intense rainfall events and reduces the number of false positives, with a good classification score varying from 63% up to 72% and a false positive rate of 36% down to 21%, for the tested years in the dataset. A score of 64% for intense rain events classification with 22% false positive rate is obtained for the most recent years. The method also achieves an almost 100% hit rate for the rain vs no rain detection, with close to no false alarms.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know