Analyses of the Pra[ogonek]dnik riverbed shape based on archival and contemporary data sets-old maps, LiDAR, DTMs, orthophotomaps and cross-sectional profile measurements
Remote Sensing, ISSN: 2072-4292, Vol: 12, Issue: 14
2020
- 11Citations
- 29Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Analyses of riverbed shape evolution are crucial for environmental protection and local water management. For narrow rivers located in forested, mountain areas, it is difficult to use remote sensing data used for large river regions. We performed a study of the Pra[ogonek]dnik River, located in the Ojców National Park (ONP), Poland. A multitemporal analysis of various data sets was performed. Light detection and ranging (LiDAR)-based data and orthophotomaps were compared with classical survey methods, and 78 cross-sectional profiles were done via GNSS and tachymetry. In order to add an extra time step, the old maps of this region were gathered, and their content was compared with contemporary data. The analysis of remote sensing data suggests that they do not provide sufficient information on the state and changes of riverbanks, river course or river depth. LiDAR data sets do not show river bottoms, and, due to plant life, do not document riverbanks. The orthophotomaps, due to tree coverage and shades, cannot be used for tracking the whole river course. The quality of old maps allows only for general shape analysis over time. This paper shows that traditional survey methods provide sufficient accuracy for such analysis, and the resulted cross-sectional profiles can and should be used to validate other, remote sensing, data sets. We diagnosed problems with the inventory and monitoring of such objects and proposed methods to refine the data acquisition.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know