Pre-launch radiometric characterization of EMI-2 on the gaofen-5 series of satellites
Remote Sensing, ISSN: 2072-4292, Vol: 13, Issue: 14
2021
- 12Citations
- 3Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The environmental trace gas monitoring instrument (EMI) is a space-borne imaging spectrometer onboard GaoFen-5, which was launched in May 2018, covering wavelengths in the range of 240–710 nm to measure NO, O, HCHO, and SO. An advanced EMI-2 instrument with a higher spatial resolution and sufficient signal-to-noise is currently planned for launch on the GaoFen-5(02) satellite in 2021. The EMI-2 instrument bidirectional scattering distribution function (BSDF) is obtained from the absolute irradiance and radiance calibration on-ground. Based on EMI-2 earth and sun optical paths, the key factors of BSDF parameters are introduced. An NIST-calibrated 1000 W FEL quartz tungsten halogen lamp and a 2D turntable are adopted for the absolute irradiance calibration. A large aperture integrating sphere system is used for the absolute radiance calibration. Based on absolute irradiance and radiance calibration functions, the BSDF parameters are obtained, with accuracy of 4.9% for UV1, 4.3% for UV2, 4.1% for VIS1, and 4.2% for VIS2. The on-ground measurement results show that the reflectance spectrum can be calculated from BSDF parameters. On-orbit application of the EMI-2 instrument BSDF are also discussed.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know