Elongated small object detection from remote sensing images using hierarchical scale-sensitive networks
Remote Sensing, ISSN: 2072-4292, Vol: 13, Issue: 16
2021
- 10Citations
- 8Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent Blog
Remote Sensing, Vol. 13, Pages 3182: Elongated Small Object Detection from Remote Sensing Images Using Hierarchical Scale-Sensitive Networks
Remote Sensing, Vol. 13, Pages 3182: Elongated Small Object Detection from Remote Sensing Images Using Hierarchical Scale-Sensitive Networks Remote Sensing doi: 10.3390/rs13163182 Authors: Zheng He
Article Description
The detection of elongated objects, such as ships, from satellite images has very important application prospects in marine transportation, shipping management, and many other scenarios. At present, the research of general object detection using neural networks has made significant progress. However, in the context of ship detection from remote sensing images, due to the elongated shape of ship structure and the wide variety of ship size, the detection accuracy is often unsatisfactory. In particular, the detection accuracy of small-scale ships is much lower than that of the large-scale ones. To this end, in this paper, we propose a hierarchical scale sensitive CenterNet (HSSCenterNet) for ship detection from remote sensing images. HSSCenterNet adopts a multi-task learning strategy. First, it presents a dual-direction vector to represent the posture or direction of the tilted bounding box, and employs a two-layer network to predict the dual direction vector, which improves the detection block of CenterNet, and cultivates the ability of detecting targets with tilted posture. Second, it divides the full-scale detection task into three parallel sub-tasks for large-scale, medium-scale, and small-scale ship detection, respectively, and obtains the final results with non-maximum suppression. Experimental results show that, HSSCenterNet achieves a significant improved performance in detecting small-scale ship targets while maintaining a high performance at medium and large scales.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know