Inverted algorithm of terrestrial water-storage anomalies based on machine learning combined with load model and its application in southwest China
Remote Sensing, ISSN: 2072-4292, Vol: 13, Issue: 17
2021
- 16Citations
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Dense Global Position System (GPS) arrays can be used to invert the terrestrial water-storage anomaly (TWSA) with higher accuracy. However, the uneven distribution of GPS stations greatly limits the application of GPS to derive the TWSA. Aiming to solve this problem, we grid the GPS array using regression to raise the reliability of TWSA inversion. First, the study uses the random forest (RF) model to simulate crustal deformation in unobserved grids. Meanwhile, the new Machine-Learning Loading-Inverted Method (MLLIM) is constructed based on the traditional GPS derived method to raise the truthfulness of TWSA inversion. Second, this research selects southwest China as the study region, the MLLIM and traditional GPS inversion methods are used to derive the TWSA, and the inverted results are contrasted with datasets of the Gravity Recovery and Climate Experiment (GRACE) Mascon and the Global Land Data Assimilation System (GLDAS) model. The comparison shows that values of Pearson Correlation Coefficient (PCC) between the MLLIM and GRACE and GRACE Follow-On (GRACE-FO) are equal to 0.91 and 0.88, respectively; and the values of R-squared (R) are equal to 0.76 and 0.65, respectively; the values of PCC and R between MLLIM and GLDAS solutions are equal to 0.79 and 0.65. Compared with the traditional GPS inversion, the MLLIM improves PCC and R by 8.85% and 7.99% on average, which indicates that the MLLIM can improve the accuracy of TWSA inversion more than the traditional GPS method. Third, this study applies the MLLIM to invert the TWSA in each province of southwest China and combines the precipitation to analyze the change of TWSA in each province. The results are as follows: (1) The spatial distribution of TWSA and precipitation is coincident, which is highlighted in southwest Yunnan and southeast Guangxi; (2) this study compares TWSA of MLLIM with GRACE and GLDAS solutions in each province, which indicates that the maximum value of PCC is as high as 0.86 and 0.94, respectively, which indicates the MLLIM can be used to invert the TWSA in the regions with sparse GPS stations. The TWSA based on the MLLIM can be used to fill the vacancy between GRACE and GRACE-FO.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know