The relative contributions of climate and grazing on the dynamics of grassland npp and pue on the qinghai-tibet plateau
Remote Sensing, ISSN: 2072-4292, Vol: 13, Issue: 17
2021
- 30Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Net primary productivity (NPP) and precipitation-use efficiency (PUE) are crucial indica-tors in understanding the responses of vegetation to global change. However, the relative contributions of climate change and human interference to the dynamics of NPP and PUE remain unclear. During the past few decades, the impacts of climate change and human activities on alpine grass-lands on the Qinghai-Tibet Plateau (QTP) have been intensifying. The aims of the study were to investigate the spatiotemporal patterns of grassland NPP and PUE on the QTP during 2000–2017 and quantify how much of the variance in NPP and PUE can be attributed to the climatic factors (precipitation and temperature) and grazing intensity. The results showed that: (1) grassland NPP significantly increased with a rate of 0.6 g C m yr over the past 18 years, mainly induced by the increased temperature and the enhanced precipitation. The temperature was the dominant factor for NPP interannual variation in mid-eastern QTP, and precipitation restrained vegetation growth most in the southwest and northeast. (2) The PUE was higher on the eastern and western parts of the plateau, but lower at the center. Regarding grassland types, the PUE of alpine steppe (0.19 g C m mm) was significantly lower than those of alpine meadow (0.31 g C m mm) and desert steppe (0.32 g C m mm). (3) Precipitation was significantly and negatively correlated with PUE and contributed the most to the temporal variation of grassland PUE on the QTP (52.7%). (4) Fur-thermore, we found that the grazing activities had the lowest contributions to both NPP and PUE interannual variation, compared to temperature and precipitation. Thus, it is suggested that climate variability rather than grazing activities dominated vegetation changes on the QTP.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know