Analysis of land use and land cover change using time-series data and random forest in north korea
Remote Sensing, ISSN: 2072-4292, Vol: 13, Issue: 17
2021
- 41Citations
- 134Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
North Korea being one of the most degraded forests globally has recently been emphasizing in forest restoration. Monitoring the trend of forest restoration in North Korea has important reference significance for regional environmental management and ecological security. Thus, this study constructed and analyzed a time-series land use land cover (LULC) map to identify the LULC changes (LULCCs) over extensive periods across North Korea and understand the forest change trends. The analysis of LULC used Landsat multi-temporal image and Random Forest algorithm on Google Earth Engine(GEE) from 2001 to 2018 in North Korea. Through the LULCC detection technique and consideration of the cropland change relation with elevation, the forest change in North Korea for 2001–2018 was evaluated. We extended the existing sampling methodology and obtained a higher overall accuracy (98.2% ± 1.6%), with corresponding kappa coefficients (0.959 ± 0.037), and improved the classification accuracy in cropland and forest cover. Through the change detection and spatial analysis, our research shows that the forests in the southern and central regions of North Korea are undergoing restoration. The sampling method we extended in this study can effectively and reliably monitoring the change trend of North Korea forests. It also provides an important reference for the regional environmental management and ecological security in North Korea.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know